Lineare Funktion      

Gegeben ist die Funktion

f(x)=0.8·x + 3

x ist Element der rationalen Zahlen.  

Teilaufgaben
(Hinweis: Die Teillösungen können über die entsprechenden Links erreicht werden!)

1. Erstellen Sie eine Wertetabelle für den Bereich -10 < x < 10! 
2. Zeichnen Sie den Graphen der Funktion f(x) im Bereich -10 < x < 10!
3. Berechnen Sie die Achsenschnittpunkte der Funktion f(x)!
4. Berechnen Sie den Steigungswinkel des Graphen der Funktion f(x)!

 


1) Wertetabelle der Funktion   f(x)=0.8·x + 3   im Bereich    ( -10 <  x  < 10 )

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
-5
-4.2
-3.4
-2.6
-1.8
-1
-0.2
0.6
1.4
2.2
3
3.8
4.6
5.4
6.2
7
7.8
8.6
9.4
10.2
11

2) Graphische Darstellung von   f(x)=0.8·x + 3


3) Berechnung der Achsenschnittpunkte der Funktion   f(x)=0.8·x + 3

Schnittpunkt mit der y-Achse

   Bedingung:   f(0) = ys    
   Rechnung:  f(0) = 3

 

Schnittpunkte mit der x-Achse

   Bedingung:   f(x) = 0
   Lösungsansatz: 1. Aufstellen der Gleichung
    2. Gleichung zur gesuchten Größe x auflösen

  Rechnung: 0 = 0.8·x + 3  
    - 0.8 x = 3 0.8 x   auf die linke Seite der Gleichung bringen
    x = - 3.75 beide Seiten der Gleichung durch   - 0.8
           

 

 

 


4) Berechnung des Steigungswinkels der Funktion   f(x)=0.8·x + 3

  Bedingung tan(α) =   m ... der Tanges des Steigungswinkels entspricht dem Steigungsfaktor
  Rechnung tan(α) =   0.8 .... also α=arctan(m)
     α         =   arctan( 0.8)  
    x          =   38.66