Kurvendiskussion: Funktion dritten Grades

 

Gegeben ist die Funktion

f(x) = - 0.25 x3 - 1.25 x2 - 1 x

x ist Element der rationalen Zahlen.

Teilaufgaben
(Hinweis: Die Teillösungen können über die entsprechenden Links erreicht werden!)

1. Zeichnen Sie den Graphen der Funktionen f(x) im Bereich -10 < x < 10!
2. Berechnen Sie die Schnittpunkte des Graphen der Funktion f(x) mit den Koordinatenachsen!
3. Berechnen Sie die Extrempunkte des Graphen der Funktion f(x)!
4. Berechnen Sie die Wendestelle des Graphen der Funktion f(x)!
5. Beschreiben Sie das Krümmungsverhalten des Graphen der Funktion f(x)!
6. Beschreiben Sie das Steigungsverhalten (Monotonieverhalten) des Graphen der Funktion f(x)!
7. Berechnen Sie die Maßzahl der Fläche, die vom Graphen der Funktion f(x) und der x-Achse eingeschlossen wird!

 

1) Graphische Darstellung der Funktion   f(x) = - 0.25 x3 - 1.25 x2 - 1 x



2) Schnittpunkte des Graphen der Funktion    f(x) = - 0.25 x3 - 1.25 x2 - 1 x   mit den Koordinatenachsen

2a) Schnittpunkt mit der y-Achse

   Bedingung:   f(0) = ys    f(0) = 0

2b) Schnittpunkte mit der x-Achse

   Bedingung:   f(x) = 0
   Lösungsansatz: 1. Erste Nullstelle durch probieren ermitteln (liegt im Bereich -3 < x < 3)  
    2. Polynomdivision
    3. Zweite und dritte Nullstelle mit der pq-Formel ermitteln

  Rechnung: 0 = - 0.25 (x3 + 5 x2 + 4 x + 0)  Faktor a3 = -0.25 ausklammern
    0 = (x3 + 5 x2 + 4 x + 0) Gleichung durch a3 = -0.25 teilen
       
  Polynomdivision:  (x3 + 5 x2 + 4 x + 0) / (x + 4 ) = x2 + 1 x + 0 angenommene Nullstelle bei x = - 4 , also... teilen durch (x + 4)
    -(x3 + 4 x2)
        1 x2 + 4 x + 0   
    -( 1 x2 + 4 x)
 
        ( 0 x + 0 )  
      -( 0 x + 0 )  
       

 

 

 

 

 

 

weiter Nullstellen über pq-Formel ...

  weitere Nullstellen 0 = x2 + 1 x + 0   0 = x2 + 1 x + 0
  anwenden der pq-Formel x1 = - 0.5 + Wurzel( 0.52 + 0)   x2 = - 0.5 - Wurzel( 0.52 + 0)
  quadrieren innerhalb des Wurzelausdrucks x1 = - 0.5 + Wurzel( 0.25 + 0)   x2 = - 0.5 - Wurzel( 0.25 + 0)
  Wurzelausdrucks zusammenfassen x1 = - 0.5 + Wurzel( 0.25)   x2 = - 0.5 - Wurzel( 0.25)
  Ergebnis für x1 berechnen x1 = - 0.5 + 0.5   x2 = - 0.5 - 0.5
  Nullstelle für x1 x1 = 0   x2 = - 1

Die Schnittpunkte mit der x-Achse (Nullstellen) liegen bei: x1 = 0 x2 = - 1 x3 = - 4

3. Berechnen der Extremwerte des Graphen der Funktion  f(x) = - 0.25 x3 - 1.25 x2 - 1 x



  f(x)   = - 0.25 x3 - 1.25 x2 - 1 x  
Bestimmen der ersten Ableitungsfunktion: f ´(x)  = - 0.75 x2 - 2.5 x - 1  
Bestimmen der zweiten Ableitungsfunktion: f ´´(x) = - 1.5 x - 2.5  
Bestimmen der dritten Ableitungsfunktion: f ´´´(x) = - 1.5  
     
notwendige Bedingung:   f ´(x) = 0 0 = - 0.75 x2 - 2.5 x - 1 0 = - 0.75 x2 - 2.5 x - 1
  0 = x2 + 3.333 x + 1.333 0 = x2 + 3.333 x + 1.333
  x1 = - 1.667 + Wurzel( 1.6672 - 1.333) x2 = - 1.667 - Wurzel( 1.6672 - 1.333)
  x1 = - 1.667 + Wurzel( 2.778 - 1.333) x2 = - 1.667 - Wurzel( 2.778 - 1.333)
  x2 = - 1.667 + Wurzel( 1.444) x2 = - 1.667 - Wurzel( 1.444)
  x1 = - 1.667 + 1.202 x2 = - 1.667 - 1.202
  x1 = - 0.465 x2 = - 2.869
     
hinreichende Bedingung:  f ´´(x) <> 0 f ´´( - 0.465) = - 1.803 f´´( - 2.869) = 1.803
  f´´(-0.46)< 0 .. an der Stelle x = -0.46
liegt daher ein Hochpunkt vor.
f´´(-2.87) > 0 .. an der Stelle x = -2.87
liegt daher ein Tiefpunkt vor.
     
berechnen der zugehörigen y-Koordinate f(-0.465) = 0.22 f(-2.869) = -1.516
Koordinaten der Extrempunkte P(-0.465 / 0.22) P(-2.869 / -1.516)

4. Berechnen der Wendestelle des Graphen der Funktion  f(x) = - 0.25 x3 - 1.25 x2 - 1 x


zweite Ableitungsfunktion: f ´´(x) = - 1.5 x - 2.5
dritten Ableitungsfunktion: f ´´´(x) = - 1.5
   
notwendige Bedingung:   f ´´(x) = 0 - 1.5 x - 2.5 = 0
  - 1.5 x = 2.5
  x = 2.5 / - 1.5
  x = - 1.667
   
hinreichende Bedingung:  f ´´´(x) <> 0 f´´´( - 1.667 ) = - 1.5 ... ist also erfüllt...
  f´´´( - 1.667 ) < 0 ... daraus folgt ein Links-Rechts-Krümmungswechselan der Wendestelle
berechnen der zugehörigen y-Koordinate f(-1.667) = -0.648
Koordinate des Wendepunkte P(-1.667 / -0.648 )

5. Krümmungsverhalten des Graphen der Funktion 

f(x) = - 0.25 x3 - 1.25 x2 - 1 x

... untersucht wird die zweite Ableitung der Funktion f(x) f ´´(x) = - 1.5 x - 2.5


Bereich links vom Wendepunkt   K1=[ - ∞; - 1.667 ] f ´´( - 3 ) = 2  
  Der Graph der zweiten Ableitung verläuft im positiven Bereich
  ... es liegt also eine Linkskrümmung vor
   
Bereich rechts vom Wendepunkt   K1=[ - 1.667 ; ∞ ] f ´´( - 1 ) = - 1  
  Der Graph der zweiten Ableitung verläuft im negativen Bereich
  ... es liegt also eine Rechtskrümmung vor


6. Monotonieverhalten des Graphen der Funktion 

f(x) = - 0.25 x3 - 1.25 x2 - 1 x

...untersucht wird die erste Ableitung

f ´(x)  = - 0.75 x2 - 2.5 x - 1





Bereich links vom Punkt  P( - 2.869; - 1.516 ) f ´( - 4 ) = - 3  

M1=[ - ∞; - 2.869 ]

Der Graph der ersten Ableitung verläuft im negativen Bereich
  ... in diesem Bereich ist die Funktion monoton fallend
   
Bereich zwischen P( - 2.869 ; - 1.516) und P( - 0.465; 0.22 ) f ´( - 1 ) = 0.75  

M2=[ - 2.869; - 0.465]

Der Graph der ersten Ableitung verläuft im positiven Bereich
  ... in diesem Bereich ist die Funktion monoton steigend
   
Bereich rechts vom Punkt  P( - 0.465; 0.22 ) f ´( 1 ) = - 4.25  

M3=[ - 0.465 ; ∞]

Der Graph der ersten Ableitung verläuft im negativen Bereich
  ... in diesem Bereich ist die Funktion monoton fallend

7. Maßzahl der Fläche

     
Die Maßzahl der Fläche A zwischen dem Graphen der Randfunktion f(x) = - 0.25 x3 - 1.25 x2 - 1 x und der x-Achse über dem Intervall [  - 4 ;  0 ] wird mit Hilfe des bestimmten Integrals berechnet!   Stammfunktion F(x) = - 0.0625 x4 - 0.4167 x3 - 0.5 x2
Maßzahl der Fläche A = F( 0 ) - F( - 4 )
Aus der graphischen Darstellung der Funktion
f(x) = - 0.25 x3 - 1.25 x2 - 1 x ist ersichtlich, dass die zu berechnende Gesamtfläche zwischen dem Graphen und der x-Achse in Teilfläche zerlegt werden muss
   

A1 = F( 0 ) - F( - 1 )
A1 = ( 0 + 0 + 0 ) - ( - 0.063 + 0.417 - 0.5 )
A1 = ( 0 ) - ( - 0.146 )
A1 = 0.146

    A2 = F( - 1 ) - F( - 4 )
A2 = ( - 0.063 + 0.417 - 0.5 ) - ( - 16 + 26.667 - 8 )
A2 = ( - 0.146 ) - ( 2.667 )
A2 = - 2.813
    Ag = |A1| + |A2|
Ag = 0.146 + 2.813
Ag = 2.958